大数据是传统数据软件应用无法处理的巨大且复杂的数据集。传统软件处理大数据主要的难点在于采集,存储,分析,数据规划,搜索,共享,传输,可视化,查询,更新和信息隐私等方面。通常行业中的大数据是指利用预测分析、用户行为分析或其他高级分析的方法从数据中获取价值,并非特定大小的数据集。
大数据大到无法统计
大数据并非特指多大的数据,但是能被称为大数据的数据集其数据量必然不能太小。
一般来讲,我们通常所使用的衡量数据量大小的最小单位为bit,也叫小b,最常用的单位为Byte,也叫大B。1 Byte =8 bit,再往上按顺序依次为KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB,他们按照进率1024(2的十次方)来计算的,即1 KB = 1024 Bytes ,1 MB = 1024 KB ,以此类推。
目前全球每年产生的数据量已经开始以ZB为单位,而且随着物联网的普及和诸多廉价的数据收集产品诞生,数据增量还将不断加速。全球数据不断爆发的情况下,大数据究竟可以有多大已经超出了我们的想象,而对于大数据的定义也有着多种多样的解释。
知名调研机构Gartner认为,大数据是需要重新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。而麦肯锡全球调研公司认为,大数据是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
综合来看不能发现,大数据是一种大到不仅我们无法直接统计和分析,也是让其在各方面都超出传统软件处理能力的存在。那么大数据行业的发展就需要新的工具来帮助处理和解决大数据所面临的种种难题,而最能够帮助大数据发展的无疑就是云计算。